Other Publications
[12] 金魁, 吴颉, “高温超导体组合薄膜和相图表征高通量方法”, 物理学报 70, 017403
[13] J. Wu, A. T. Bollinger, X. He, G. D. Gu, H. Miao, M. P. M. Dean, I. K. Robinson and I. Božović, "Angle-resolved transport measurements reveal electronic nematicity in cuprate superconductors", J. Supercond. Nov. Magn. 33, 87-92
[14] A. T. Bollinger, Z.-B. Wu, L. Wu, X. He, I. Drozdov, J. Wu, I. K. Robinson and I. Božović. "Strain and Electronic Nematicity in La2-xSrxCuO4." J. Supercond. Nov. Magn. 33, 93-98
[15] J. Wu, A. T. Bollinger, X. He and I. Božović, "Detecting electronic nematicity by the angle-resolved transverse resistivity measurements", J. Supercond. Nov. Magn. 32, 1623-1628
[16] Y. Li, J. Wu, F. Camino, G. Gu, I. Bozovic and J. Tranquada, "Large surface conductance and two-dimensional superconductivity in micro-structured crystalline topological insulators", Appl. Phys. Lett. 115, 173507
[17] I. Božović, J. Wu, X. He and A. T. Bollinger, “What is really extraordinary in cuprate superconductors?”, Phys. C 558, 30-37
[18] I. Božović, J. Wu, X. He and A. T. Bollinger, "Is there a path from cuprates towards room-temperature superconductivity?", Quantum Studies: Mathematics and Foundations 5, 55-63
[19] J. Wu, A. T. Bollinger, X. He and I. Božović, "Pervasive electronic nematicity in a cuprate superconductor", Phys. C 549, 95-98
[20] I. Božović, X. He, J. Wu, and A. T. Bollinger, "The vanishing superfluid density in cuprates - and why it matters." J. Supercond. Nov. Magn. 31, 2683-2690
[21] I. Božović, X. He, J. Wu and A. T. Bollinger, “Can high-Tc superconductivity in cuprates be explained by the conventional BCS theory?”, Low Temp. Phys 44, 519-527
[22] J. Wu, A.T. Bollinger, X. He and I. Božović "Combinatorial synthesis and high-throughput characterization of copper-oxide superconductors", Chinese Physics B 27, 118102
[23] I. Božović, X. He, J. Wu and A. T. Bollinger, “On the origin of high-temperature superconductivity in cuprates”, Proceedings of SPIE 10105, 1010502
[24] I. Božović, X. He, J. Wu and A. T. Bollinger, “What is strange about high-temperature superconductivity in cuprates?”, Int. J. Mod. Phys. B 31, 1745005
[25] J. Wu, V. Lauter, H. Ambaye, X. He, and I. Božović, “Search for ferromagnetic order in overdoped copper-oxide superconductors”, Sci. Rep. 7, 45896
[26] I. Božović, X. He, J. Wu and A. T. Bollinger, “The demise of superfluid density in overdoped La2−xSrxCuO4 films grown by molecular beam epitaxy”, J. Supercond. Nov. Magn. 30, 1345-1348
[27] Jie Wu, Anthony T. Bollinger, Yujie Sun and Ivan Božović, “Ground state of underdoped cuprates in vicinity of superconductor-to-insulator transition”, J. Supercond. Nov. Magn. 30, 1073-1076
[28] D. Pavuna, G. Dubuis, A. T. Bollinger, J. Wu, X. He and I. Božović, “On local pairs vs. BCS: quo vadis high-Tc superconductivity”, J. Supercond. Nov. Magn. 30, 731-734
[29] Zoran Radović, Mihajlo Vanević, Jie Wu, Anthony T. Bollinger and Ivan Božović, “Interface superconductivity in cuprates defies Fermi-liquid description”, J. Supercond. Nov. Magn. 30, 725-729
[30] A. T. Bollinger, J. Wu, and I. Božović, “Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy”, APL Mater. 4, 053205
[31] J. Wu, and I. Božović, “Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy”, APL Mater. 3, 062401
[32] Z. Stegen, Su Jung Han, Jie Wu, A. K. Pramanik, M. Hücker, Genda Gu, Qiang Li, J. H. Park, G. S. Boebinger, and J. M. Tranquada, “Evolution of superconducting correlations within magnetic-field-decoupled La2−xBaxCuO4 (x=0.095)”, Phys. Rev. B 87, 064509
[33] J. Li, E. Arenholz, Y. Meng, A. Tan, J. Park, E. Jin, H. Son, J. Wu, C.A. Jenkins, A. Scholl, H. W. Zhao, Chanyong Hwang, and Z. Q. Qiu, “Continuous Spin Reorientation Transition in Epitaxial Antiferromagnetic NiO Thin Films”, Phys. Rev. B 84, 012406
[34] J. Wu, A. Scholl, E. Arenholz, Chanyong Hwang, and Z. Q. Qiu, “Construction of the magnetic phase diagram of FeMn/Ni/Cu(001) using Photoemission Electron Microscopy”, IEEE Transactions on Magnetics 7, 1631
[35] Y. Meng, J. Li, A. Tan, E. Jin, J. Son, J. S. Park, A. Doran, A.T. Young, A. Scholl, E. Arenholz, J. Wu, C. Hwang, H. W. Zhao, and Z. Q. Qiu, “Element-specific study of epitaxial NiO/Ag/CoO/Fe films grown on vicinal Ag(001) using Photoemission Electron Microscopy”, Appl. Phys. Lett. 98, 212508
[36] J. S. Park, A. Quesada Y. Meng, J. Li, E. Jin, H. Son, A. Tan, J. Wu, C. Hwang, H. W. Zhao, A. K. Schmid, and Z. Q. Qiu, “Determination of spin-polarized quantum well states and spin-split energy dispersions of Co ultrathin films grown on Mo(110)”, Phys. Rev. B 83, 113405
[37] G. Chen, J. Li, F. Z. Liu, Y. He, J. Zhu, J. Wu, Z. Q. Qiu and Y. Z. Wu, “Four-fold magnetic anisotropy induced by the antiferromagnetic order in FeMn/Co/Cu(001) system”, J. Appl. Phys. 108, 073905
[38] J. Wu, D. Carlton, E. Oelker, J.S. Park, E. Arenholz, A. Scholl, Chanyong Hwang, J. Bokor, and Z.Q. Qiu, “Switching magnetic vortex by interlayer coupling in epitaxially grown Co/Cu/Py/Cu(001) trilayer disks”, J. Phys.: Condens. Matter. 22, 342001
[39] J. S. Park, J. Wu, E. Arenholz, M. Liberati, A. Scholl, Y. Meng, Chanyong Hwang, and Z. Q. Qiu, “Rotatable magnetic anisotropy of CoO/Fe/Ag(001) in the ultrathin regime of the CoO layer”, Appl. Phys. Lett., 97, 042505
[40] J. Wu, J. Park, W. Kim, Chanyong Hwang, and Z. Q. Qiu, “Tailoring exchange bias by oxidizing Co film across a Cu wedge in Cu(wedge)/CoO/Co/Cu(001)”, J. of Mag. Magn. Mat. 322, 2728
[41] Wondong Kim, E. Jin, J. Wu, J. Park, E. Arenholz, A. Scholl, Chanyong Hwang, and Z. Q. Qiu, “Effect of NiO spin orientation on the magnetic anisotropy of the Fe film in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001)”, Phys. Rev. B 81, 174416
[42] Y. Z. Wu, C. Won, J. Wu, Y. Xu, S. Wang, Ke Xia, E. Rotenberg, and Z. Q. Qiu,“Effect of inserting Ni and Co layers on the quantum well states of a thin Cu film grown on Co/Cu(001)”, Phys. Rev. B 80, 205426
[43] J. Wu, J. Choi, A. Scholl, A. Doran, E. Arenholz, Y. Z. Wu, C. Won, Chanyong Hwang, and Z. Q. Qiu, “Element-specific study of the anomalous magnetic interlayer coupling across NiO spacer layer in Co/NiO/Fe/Ag(001) using XMCD and XMLD”, Phys. Rev. B 80, 012409
[44] J. Wu, J. Choi, A. Scholl, A. Doran, E. Arenholz, Chanyong Hwang, and Z. Q. Qiu, “Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)”, Phys. Rev. B 79, 212411
[45] J. Choi, J. Wu, F.El. Gabaly, A.K. Schmid, C. Hwang and Z Q Qiu, “Quantum well states in Au/Ru(0001) and their effect on the magnetic properties of a Co overlayer”, New J. Phys. 11, 043016
[46] J. Wu, J. Choi, C. Won, Y. Z. Wu, A. Scholl, A. Doran, Chanyong Hwang, and Z. Q. Qiu, “Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)”, Phys. Rev. B 79, 014429
[47] J. Wu, J.W. Choi, O. Krupin, E. Rotenberg, Y. Z. Wu, and Z. Q. Qiu, “Retrieving the energy band of Cu thin films using the quantum well states”, J. Phys.: Condens. Matter 20, 035213
[48] U. Bauer, J. Choi, J. Wu, H. Chen, and Z. Q. Qiu, “Effect of step decoration on the spin reorientation of Ni films grown on vicinal Cu(001)”, Phys. Rev. B 76, 184415
[49] J. Choi, J. Wu, Y. Z. Wu, C. Won, A. Scholl, A. Doran, T. Owens, and Z. Q. Qiu, “Effect of atomic steps on the interfacial interaction of FeMn/Co film grown on vicinal Cu(001)”, Phys. Rev. B 76, 054407
[50] C. Won, Y. Z. Wu, J. Choi, W. Kim, A. Scholl, A. Doran, T. Owens, J. Wu, X. F. Jin, and Z. Q. Qiu, “Magnetic stripe melting at the spin reorientation transition in Fe/Ni/Cu(001)”, Phys. Rev. B 71, 224429
[51] C.S. Tian, Z. Tian, J. Wu, G.S. Dong, X.F. Jin, Y.Z. Wu and Z.Q. Qiu, “Effect of Mn overlayer on spin reorientation transition at Ni/Cu(001)”, J. of Mag. Magn. Mat. 286, 497
[52] J. Wu, G.S. Dong, and X.F. Jin, “Temperature-dependent magnetization in ferromagnetic bilayer consisting of two materials with different Curie temperature”, Phys. Rev. B 70, 212406